Exercise Solution 3.16

This is an application for our multi-dimensional identity [3.31]. This may not be immediately obvious, but let’s present our problem in a slightly different manner.

Define a 2-dimensional random vector Z as having uncorrelated components Z1 and Z2. Each has mean 0. Like the first two components of X, they have standard deviations of 5 and 4 respectively. Now set:


where the μi are the unspecified means of the components of X.

We have not altered our characterization of X in any way. We have simply placed the components of X on an equal footing. Instead of defining X3 in terms of X1 and X2, we define all three components as a linear polynomial of Z. Now we apply [3.31]



Based upon this covariance matrix, we obtain




Enter your address for insights that will transform your risk management.

Click the link in the email I just sent you to confirm your address and start your subscription.

Defining Risk

Enter your email address to receive your copy and subscribe to Glyn's Risk Management Newsletter.

Click the link in the email I just sent you to download your paper and start your subscription.